Main Article Content

Abstract

The existence of mobile banking services is currently experiencing rapid growth. Adopting such a large number of users makes mobile banking services one of the main needs to meet the needs of conducting financial transactions. Therefore, there is a need for additional information for mobile banking service developers on the dominant factors influencing user behavioral intentions. This research is present as a forum to provide an overview of the user's perspective on Mestika bank's mobile banking service. This research aims to find out what factors play an important role in behavioral intention to use Mestika bank's mobile banking services based on the UTAUT2 concept. The research instrument used a questionnaire distributed online to 240 respondents in Medan City and Pematangsiantar City, Indonesia. Next, the researcher tested the hypothesis using Structural Equation Modeling (SEM) based on a variant called Partial Least Square (PLS) and the SmartPLS version 3.0 application as a tool to analyze it. This research concludes that effort expectancy has the most significant influence and plays a very important role in shaping the behavioral intention of using Mestika bank's mobile banking. Then performance expectancy and social influence hedonic motivation also significantly influence behavioral intentions to use Mestika bank's mobile banking. Furthermore, the results of this study also conclude that facilitating conditions and habit have no significant effect on behavioral intentions to use Mestika bank's mobile banking.

Keywords

Behavioral Intention Mobile Banking UTAUT2 Model

Article Details

How to Cite
Marpaung, F. K. ., Dewi, R. S. ., Grace, E., Sudirman, A., & Sugiat, M. (2021). Behavioral Stimulus for Using Bank Mestika Mobile Banking Services: UTAUT2 Model Perspective. Golden Ratio of Marketing and Applied Psychology of Business, 1(2), 61–72. https://doi.org/10.52970/grmapb.v1i2.68

References

  1. Ajzen, I. (1991). The Theory of Planned Behavior. Journal Organizational Behavior and Human Decision Processes, 50, 179–211. https://doi.org/10.1080/10410236.2018.1493416
  2. Al-Tarawneh, J. M. (2016). Factors Influencing The Adoption Of Mobile Banking Services In Jordan From The Perspective Of Customers: Overview And Pilot Study. International Journal of Scientific and Research Publications, 6(9), 208–2250. www.ijsrp.org
  3. Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors Influencing Adoption Of Mobile Banking By Jordanian Bank Customers: Extending UTAUT2 With Trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
  4. Alam, M. M. D. (2014). Factors Affecting Consumers’ Adoption of Mobile Banking In Bangladesh: An Empirical Study. TNI Journal of Engineering and Technology, 2(2), 31–37.
  5. Albashrawi, M., Kartal, H., Oztekin, A., & Motiwalla, L. (2019). Self-Reported and Computer-Recorded Experience in Mobile Banking: a Multi-Phase Path Analytic Approach. Information Systems Frontiers, 21(4), 773–790. https://doi.org/10.1007/s10796-018-9892-1
  6. Alkhaldi, A. N. (2014). An Empirical Examination of Customers’ Mobile Phone Experience And Awareness Of Mobile Banking Services In Mobile Banking In Saudi Arabia. Interdisciplinary Journal of Information, Knowledge, and Management, 12, 283–308. https://doi.org/10.28945/3887
  7. Baptista, G., & Oliveira, T. (2015). Understanding Mobile Banking: The Unified Theory Of Acceptance And Use Of Technology Combined With Cultural Moderators. Computers in Human Behavior, 50, 418–430. https://doi.org/10.1016/j.chb.2015.04.024
  8. Barati, S., & Mohammadi, S. (2009). An Efficient Model to Improve Customer Acceptance of Mobile Banking. Proceedings of the World Congress on Engineering and Computer Science, 2, 759–763.
  9. Bharata, W., & Widyaningrum, P. W. (2020). Analisis Penerimaan Teknologi Mobile Banking Terhadap Use Behavior Melalui Pendekatan Model Utaut 2 (Studi Pada Nasabah KCU BCA Malang). Capital: Jurnal Ekonomi Dan Manajemen, 3(2), 139. https://doi.org/10.25273/capital.v3i2.6080
  10. Bhatiasevi, V. (2015). An Extended UTAUT Model To Explain The Adoption Of Mobile Banking. Information Development, 32(4), 799–814. https://doi.org/10.1177/0266666915570764
  11. Chao, C. M. (2019). Factors Determining The Behavioral Intention To Use Mobile Learning: An Application And Extension Of The UTAUT Model. Frontiers in Psychology, 10(JULY), 1–14. https://doi.org/10.3389/fpsyg.2019.01652
  12. Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(7), 1590–1618. https://doi.org/10.1108/IJBM-09-2018-0256
  13. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
  14. Farah, M. F., Hasni, M. J. S., & Abbas, A. K. (2018). Mobile-Banking Adoption: Empirical Evidence From The Banking Sector In Pakistan. International Journal of Bank Marketing, 36(7), 1386–1413. https://doi.org/10.1108/IJBM-10-2017-0215
  15. Fitria, L., & Winata, A. (2020). The Effect of Electronic Coupon Value to Perceived Usefulness and Perceived Ease-of-Use and its Implication to Behavioral Intention to Use Server-Based Electronic Money. International Journal of Innovative Science and Research Technology, 5(1), 147–158.
  16. Ghalandari, K. (2012). The Effect of Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions on Acceptance of E-Banking Services in Iran: the Moderating Role of Age and Gender. Middle-East Journal of Scientific Research, 12(6), 801–807. https://doi.org/10.5829/idosi.mejsr.2012.12.6.2536
  17. Ghozali, I. (2014). Structural Equation Modeling, Metode Alternatif dengan Partial Least Square (PLS). Badan Penerbit Universitas Diponegoro.
  18. Ginantra, N. L. W. S., Simarmata, J., Purba, R. A., Tojiri, M. Y., Duwila, A. A., Siregar, M. N. H., Nainggolan, L. E., Marit, E. L., Sudirman, A., & Siswanti, I. (2020). Teknologi Finansial Sistem Finansial Berbasis Teknologi di Era Digital. Yayasan Kita Menulis.
  19. Gupta, K., & Arora, N. (2019). Investigating Consumer Intention To Accept Mobile Payment Systems Through Unified Theory Of Acceptance Model: An Indian Perspective. South Asian Journal of Business Studies, 9(1), 88–114. https://doi.org/10.1108/SAJBS-03-2019-0037
  20. Hair, J. F. (2014). Multivariate Data Analysis (7th Editio). Pearson Prentice Hall.
  21. Halim, F., Efendi, Butarbutar, M., Malau, A. R., & Sudirman, A. (2020). Constituents Driving Interest in Using E-Wallets in Generation Z. Proceeding on International Conference of Science Management Art Research Technology, 1(1), 101–116. https://doi.org/10.31098/ic-smart.v1i1.32
  22. Hariyanti, A. O., Hidayatullah, S., & Prasetya, D. A. (2020). Analysis of the Acceptance and Use of Mobile Banking Services Using the Unified Theory of Acceptance and Use of Technology (Case Study of Bank Jatim Pasuruan Branch). Research Journal of Advanced Engineering and Science, 5(1), 254–262.
  23. Indahingwati, A., Launtu, A., Tamsah, H., Firman, A., Putra, A. H. P. K., & Aswari, A. (2019). How Digital Technology Driven Millennial Consumer Behaviour in Indonesia. Journal of Distribution Science, 17(8), 25–34. https://doi.org/10.15722/jds.17.08.201908.25
  24. Iskandar, M., Hartoyo, H., & Hermadi, I. (2020). Analysis of Factors Affecting Behavioral Intention and Use of Behavioral of Mobile Banking Using Unified Theory of Acceptance and Use of Technology 2 Model Approach. International Review of Management and Marketing, 10(2), 41–49. https://doi.org/10.32479/irmm.9292
  25. Islam, M. S., Kariab, N., Soliman, M., Fouji, M. H., Khalid, J., & Khaleel, M. (2017). Adoption Of Mobile Banking In Bangladesh: A Conceptual Framework. Review of Social Sciences, 02(08), 411.
  26. Juhri, K., & Dewi, C. K. (2017). Kepercayaan Dan Penerimaan Layanan Mobile Money T-Cash Di Bandung Dengan Pendekatan Technology Acceptance Model ( Tam ). Jurnal Pro Bisnis, 10(1), 36–51.
  27. Kim, G., Shin, B., & Lee, H. G. (2009). Understanding Dynamics Between Initial Trust And Usage Intentions Of Mobile Banking. Information Systems Journal, 19(3), 283–311. https://doi.org/10.1111/j.1365-2575.2007.00269.x
  28. Laukkanen, T., Sinkkonen, S., Kivijärvi, M., & Laukkanen, P. (2007). Innovation Resistance Among Mature Consumers. Journal of Consumer Marketing, 24(7), 419–427. https://doi.org/10.1108/07363760710834834
  29. Lavorata, L. (2014). Influence of retailers’ commitment to sustainable development on store image, consumer loyalty and consumer boycotts: Proposal for a model using the theory of planned behavior. Journal of Retailing and Consumer Services, 21(6), 1021–1027. https://doi.org/10.1016/j.jretconser.2014.01.003
  30. Madan, K., & Yadav, R. (2016). Behavioural intention to adopt mobile wallet: a developing country perspective. Journal of Indian Business Research, 8(3), 227–244. https://doi.org/10.1108/JIBR-10-2015-0112
  31. Maduku, D. K. (2017). Customer Acceptance Of Mobile Banking Services: Use Experience As Moderator. Social Behavior and Personality, 45(6), 893–900. https://doi.org/10.2224/sbp.5871
  32. Mansur, D. M., Sule, E. T., Kartini, D., Oesman, Y. M., Putra, A. H. P. K., & Chamidah, N. (2019). Moderating of The Role of Technology Theory To The Existence of Consumer Behavior on E-Commerce. Journal of Distribution Science, 17(7), 15–25. https://doi.org/10.15722/jds.17.07.201907.15
  33. Mashagba, F. F. Al, & Nassar, M. O. (2014). Modified UTAUT Model to Study the Factors Affecting the Adoption of Mobile Banking in Jordan. International Journal of Sciences: Basic and Applied Research (IJSBAR), 6(1), 83–94.
  34. Merhi, M., Hone, K., Tarhini, A., & Ameen, N. (2020). An Empirical Examination Of The Moderating Role Of Age And Gender In Consumer Mobile Banking Use: A Cross-National, Quantitative Study. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-03-2020-0092
  35. Mufingatun, M., & Prijanto, B. (2020). Analysis of Factors Affecting Adoption of Mobile Banking Application in Indonesia. Esensi: Jurnal Bisnis Dan Manajemen, 10(1), 31–44. https://doi.org/10.15408/ess.v10i1.13972
  36. Nana Triapnita Nainggolan, Munandar, A. S., Lora Ekana Nainggolan, Fuadi, P. H., Dewa Putu Yudhi Ardiana, Acai Sudirman, D. G., Nina Mistriani, A. H. P. K., & Astri Rumondang, D. G. (2020). Perilaku Konsumen Di Era Digital. Yayasan Kita Menulis.
  37. Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending The Understanding Of Mobile Banking Adoption: When UTAUT Meets TTF and ITM. International Journal of Information Management, 34(5), 689–703. https://doi.org/10.1016/j.ijinfomgt.2014.06.004
  38. Purwanto, E., & Loisa, J. (2020). The Intention and Use Behaviour of the Mobile Banking System in Indonesia: UTAUT Model. Technology Reports of Kansai University, 62(6), 2757–2767.
  39. Putri, D. A., Indrawati, & Harsono, L. D. (2019). The Use of Modified Unified Theory of Acceptance and Use of Technology 2 Model to Analyze Factors Influencing Behavioural Intentions (A Student on Bukalapak Mobile App Indonesia. International Journal of Business and Management Invention (IJBMI), 8(4), 80–84. https://doi.org/10.21275/ART20178283
  40. Rahardjo, B., Akbar, B. M. B., & Novitaningtyas, I. (2020). The Analysis of Intention and Use of Financial Technology (The Case of E-money). Journal of Accounting and Strategic Finance, 3(1), 88–102. https://doi.org/10.33005/jasf.v3i1.70
  41. Rembulan, N. D. R., & Firmansyah, E. A. (2020). Perilaku Konsumen Muslim Generasi-Z Dalam Pengadopsian Dompet Digital. Valid Jurnal Ilmiah, 17(2), 111–128.
  42. Sair, Ali, S., Danish, & Qaisar, R. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention through personal innovativeness among Pakistani consumers. Pakistan Journal of Commerce and Social Sciences, 12(2), 501–520.
  43. Saparudin, M., Rahayu, A., Hurriyati, R., & Sultan, M. A. (2020). Exploring The Role Of Trust In Mobile-Banking Use By Indonesian Customer Using Unified Theory Of Acceptance And Usage Technology. International Journal of Financial Research, 11(2), 51–60. https://doi.org/10.5430/ijfr.v11n2p51
  44. Septiani, R., Handayani, P. W., & Azzahro, F. (2017). An empirical examination of factors affecting the behavioral intention to use online transportation service: Case study of GRAB. International Conference on Advanced Computer Science and Information Systems, ICACSIS 2017. https://doi.org/10.1109/ICACSIS.2017.8355017
  45. Shankar, A., & Kumari, P. (2016). Factors Affecting Mobile Banking Adoption Behavior in India. Journal of Internet Banking and Commerce, 21(1).
  46. Tamilselvi, R., & Balaji, P. (2019). The Key Determinants Of Behavioural Intention Towards Mobile Banking Adoption. International Journal of Innovative Technology and Exploring Engineering, 8(10), 1124–1130. https://doi.org/10.35940/ijitee.J8891.0881019
  47. Thusi, P., & Maduku, D. K. (2020). South African Millennials’ Acceptance And Use Of Retail Mobile Banking Apps: An Integrated Perspective. Computers in Human Behavior, 111. https://doi.org/10.1016/j.chb.2020.106405
  48. Venkatesh, V., Morris, Michael, G., Davis, G. B., & Davis, F. D. (2003). User Acceptance Of Information Technology: Toward A Unified View. MIS Quarter, 27(3), 425–278. https://doi.org/10.1016/j.inoche.2016.03.015
  49. Venkatesh, V., Thong, James, Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.1109/MWSYM.2015.7167037
  50. Welly, Y., Supitriyani, S., Yusnaini, Y., & Sudirman, A. (2020). Factors of Using Non-Cash Payments to the Consumption Level of Students in Pematangsiantar City. Jurnal Bisnis Dan Manajemen, 7(1), 61–68. https://doi.org/10.26905/jbm.v7i1.4041
  51. Win, N. N., Aung, P. P., & Phyo, M. T. (2021). Factors Influencing Behavioral Intention to Use and Use Behavior of Mobile Banking in Myanmar Using a Model Based on Unified Acceptance Theory. Human Behavior, Development and Society, 22(1), 19–30.
  52. Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to Explain Mobile Banking User Adoption. Computers in Human Behavior, 26(4), 760–767. https://doi.org/10.1016/j.chb.2010.01.013